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Project Accomplishments 
 
The primary goal of this project was to create analytical methods for estimating 
such metrics as performance/congestion and capacity in large-scale 
communication networks.  Since real networks exhibit a dizzying variety of 
forms and features, focus was placed on understanding fundamental intrinsic 
geometric and topological features with the hope that the said metrics could be 
derived parsimoniously from global features rather than through complex local 
features which would have made the goal of this project unachievable.   
 
Up to 2007, there had been little research that attempted to cast the study of 
large-scale real-life networks as a branch of geometry.  We therefore took our 
starting position from the work of Gromov and his geometric notion of large-
scale (negative) curvature of geodesic metric spaces (GMS), since any graph 
with the natural or reasonable link-metric would be an instance of a GMS. 
Indeed, the “small world” property observed ubiquitously in man-made and 
natural networks hinted at the possibility that these structures would likely have 
“tree-like” geometry and thus exhibit some form of negative curvature.  
Negative curvature in the large, in the sense of Gromov, could thus provide a 
formalism to quantify the degree to which large-scale networks could prove to 
be tree-like, as quantified through the thin triangle condition and their universal 
δ-hyperbolicity.   
 
Our first report [1] leveraged existing connectivity data at the IP-layer of a 
dozen global networks as measured by the RocketFuel team (funded by NSF in 
the early to mid 2000s).  In our work, we created an experimental formalism – 
the curvature plot – which helped quantify “δ-hyperbolicity” of large-scale 
networks and compared and contrasted these with the hyperbolicity (or lack 
thereof) of a dozen or so well-understood networks, from regular Euclidean and 
hyperbolic lattices to various random graphs. The results provided strong 



evidence of the possibility of hyperbolicity of these networks as well as a 
subset of better-understood classical networks. 
 
A key observation from our work was the notion that δ-hyperbolic networks 
would likely have an inherent non-empty core through which a fixed fraction of 
the total load of the network passes.  Thus for a network of size N we expect 
O(N^2) scaling of load in the network core.  We also provided a proof of 
O(N^2) scaling of the core load in power-law networks which satisfy some 
general scaling assumptions, and showed that these assumptions apply to 
preferential attachment models [2]. As a byproduct, we showed that the 
probability of a node having a load l scales as 1/l^2 in such models, a point of 
controversy prior to our work. A formal proof of O(N^2) scaling of load in δ-
hyperbolic networks was subsequently furnished in [3,4,5]. 
 
Another key observation from the curvature plots in [1] was that the standard 
random graph (due to Erdos-Renyi) in the regime where the average degrees 
remain fixed (and above 1) and the number of nodes get large, is not 
hyperbolic.  This was surprising since it was generally assumed that random 
graphs are locally tree-like and in addition have a positive spectral gap.  These 
two hint strongly at the possibility of hyperbolicity.  In [6] we provided a 
formal proof that E-R random graphs are neither hyperbolic nor do they have a 
positive spectral gap.  We elucidated that the anecdotal spectral gap in random 
graphs arises in the regime in which degrees scale like log(N) and are not 
constant.  We also elucidated that the notion of linear isoperimetry in 
hyperbolic geometry is different from that used in the graph theory literature, 
another source of confusion since some δ-hyperbolic networks may indeed 
have a zero spectral gap even though they satisfy a linear (hyperbolic) 
isoperimetric inequality and not a linear (graph theoretic) isoperimetric 
inequality. 
 
The latter observation was a starting point to better understand why the 
Cheeger ratio in finite regular trees differed from that of the infinite regular 
tree. Using Dirichlet eigenvalues in place of standard eigenvalues, we provided 
a proof in [7] of convergence of this ratio for finite graphs as the size scales up 
to infinity. This machinery also enabled us to use a new way to use spectral 
clustering for detection of communities (sub-graphs with small cuts) and 
demonstrated this by showing novel clusterings of the dozen RocketFuel 
networks, our starting point in this effort. 
 
In conclusion, the notion of curvature plot we introduced in [1] is likely to 
become a basic tool for the analysis of large-scale networks and specifically for 
detection of negative curvature in the large. As such, we have started exploring 
computationally simpler approaches for identification of hyperblicity via the 4-
point condition and are also expanding the underlying sampling method to 
explore more adequately the tails of various distributions that arise in the 
quantification of curvature.  These form the basis of our ongoing work. This 



grant enabled us to study and provide new tools based on geometry and 
topology for estimation of congestion and capacity in large-scale complex 
networks with much potential for applications beyond communication 
networks, to biological and social networks where much local measurements 
currently dominate alternative approaches that would seek fundamental insights 
gained from geometry. 
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